

Измерение вязкости и плотности ионных жидкостей/смесей и растворителей

Области применения: Химическая индустрия, синтез, исследования и разработки

Ионные жидкости используются в качестве сильных растворителей, электропроводящих жидкостей и реакционных сред для химических процессов. Благодаря точному определению вязкости можно получить важную информацию о химической структуре, составе и чистоте вещества. Благодаря высокой химической стойкости и точному контролю температуры, микровискозиметр Lovis 2000 М/МЕ идеален для анализов ионных жидкостей.

1 Введение

Ионные жидкости (ИЖ) - это соли, находящиеся в жидком состоянии при комнатной или более высокой температуре. Ионные жидкости состоят из катионной (положительно заряженной) и анионной (отрицательно заряженной) части.

В частности, жидкие при комнатной температуре ионные растворы объединяют в себе ряд выдающихся свойств, например:

- широкая область жидкого состояния, с комнатной температурой плавления
- низкая горючесть
- низкая летучесть
- высокая термальная и электрохимическая стабильность

Эти характеристики зависят от молекулярной структуры катионов и анионов в растворе. Путём обмена катионов и анионов можно повлиять на физические и механические свойства.

Ионные жидкости используются в различных сферах, например, в качестве электролитов в электрохимии, как растворители в процессах катализа, экстракции или же в химическом синтезе.

Для технологических целей, ионные жидкости редко используются в чистом виде, тогда как их растворители могут оптимизировать их физические и химические свойства.

В процессе разбавления ионных жидкостей, важно понимать влияние добавленных компонентов, особенно, случайно вводимых примесей. Одна из возможностей обнаружения примесей в ионных жидкостях - это определение вязкости. Величина вязкости растворов существенно меняется в зависимости от химической структуры, состава, температуры и наличия растворов, примесей. Хлоридное загрязнение, к примеру, повышает вязкость ионных жидкостей, в то время как наличие воды, или других со-растворителей, уменьшает вязкость.

Кроме того, значения вязкости и плотности необходимы для анализов ионных растворов, использующих Диэлектрическую Релаксационную Спектрометрию (DRS) - перспективную методику исследования структуры и динамики чистых ионных жидкостей. Она анализирует флуктуации постоянных диполей в ответ на колебания электромагнитного поля в микроволновом диапазоне (ГГц).

Диэлектрическая релаксационная спектрометрия нуждается в значениях вязкости, поскольку существует зависимость между вязкостью раствора и временем релаксации вращающихся молекул. Время молекулярной вращательной корреляции может быть связано с объемной динамической вязкостью через уравнение Дебая-Стокса-Эйнштейна:

 $\tau = (3V_{\text{eff}} \cdot \eta / k_B \cdot T) + \tau^0$

V_{eff} ... эффективный объем вращения релаксирующих молекул

kв ... постоянная Больцмана

Т ... термодинамическая температура (Кельвин)

τ⁰ ... эмпирическая ось-перехват, которая иногда интерпретируется как время корреляции свободного вращателя

Плотность жидкости имеет большое значение, так как она сильно связана с молярным объемом жидкостей.

2 Образцы и подготовка проб

2.1 Растворитель

Ацетонитрил (AH, Fa. Merck >99.9 %)

Ацетонитрил - это биполярный растворитель, широко используемый, например, в гидрометаллургической обработке меди, в зарядных устройствах или как растворитель в жидкостной хроматографии. Он имеет удобную область жидкого состояния, относительно низкую вязкость и способность растворять широкий спектр органических, неорганических соединений.

Как известно, ацетонитрил полностью смешивается со многими ионными жидкостями на основе алкилимидазолия при комнатной температуре, поэтому он и был выбран.

2.2 Ионная жидкость

1-этил-3-метилимидазолийэтилсульфат (99%) [emim] [EtSO4] (IoLiTec)

Перед использованием ионная жидкость обезвоживалась в глубоком вакууме в течение 7 дней приблизительно при 40 ° С. Содержание воды определялось путем кулонометрического титрования по Карлу Фишеру, а содержание галогенида количественно измерялось потенциометрическим титрованием.

Обезвоженная ионная жидкость хранилась в перчаточном боксе, запо2лненном азотом. При последующих измерениях вязкости и плотности, инертная атм2осфера азота поддерживалась с помощью стеклянных виал, закрытых септой.

2.3 Подготовка образца и заполнение испытательного сосуда

Были подготовлены: чистый ацетонитрил и чистая ионная жидкость, также как и шесть различных молярных фракций ионной жидкости ацетонитрила.

Название образца	Мольная доля ионной жидкости в АН
Чистый АН	0
ИЖ+АН1	0,04004
ИЖ+АН2	0,1036
12 СНА+ЖИ	0,2862
ИЖ+АН4	0,6059
ИЖ+АН5	0,7637
ИЖ+АН6	0,8913
Чистая ИЖ	1

Таблица 1: Молярные фракции двух чистых растворов растворителя и ионной жидкости, а также шесть разбавленных растворов

Капилляр и ячейка плотности заполняются отдельно. Для поддержания инертной азотной атмосферы азота капилляр и ячейка плотности заполняются непосредственно из закрытой тары, путём забора образца инъекционной иглой через септу. Заполнение нужно производить медленно и осторожно во избежание сдвига материала и предотвратить образование пузырьков воздуха. После заполнения капилляра, инъекционная игла и шприц извлекаются, а капилляр нужно быстро закрыть.

Совет: Для образцов, которые не должны взаимодействовать с воздухом, мы рекомендуем герметично закрытые капилляры, заполняемые вручную.

3 Приборы

3.1 DMA™ M Density Meter и Lovis 2000 ME

Рисунок 1: Плотномер DMA™ M и модуль микровискозиметра Lovis 2000 ME

Три индуктивных датчика измеряют время падения металлического шарика внутри капилляра, наполненного образцом. Lovis рассчитывает динамическую вязкость (η), исходя из времени падения (t) и плотности образца. Внутри пролтомера DMA™ М находится осциллирующая U-образная трубка, она определяет плотность с максимальной точностью, учитывая влияние вязкости.

3.2 Параметры измерения

Измерения проводились при температуре 25 °C.

Измерение вязкости:

- Два стандартных капилляра: 1,59 мм / 1,8 мм
- Стальной шарик 1,5 мм
- Пять углов от 20° до 60° с шагом 10°

Диаметр капилляра выбирался исходя из оптимального времени прогона шарика. Из-за большой разницы в значениях вязкости мольных фракций, было необходимо перейти от капилляра 1,59 мм к капилляру 1,8 мм (см. Рис. 2 и Таблицу 2).

4 Результаты

Измеренные данные показывают, что вязкость растворов ионных жидкостей уменьшается при добавлении ацетонитрила к чистой ионной жидкости. Поскольку существует взаимосвязь между вязкостью и изменениями в составе ионных жидкостей, необходим надежный прибор для точных измерений вязкости.

На Рисунке 2 показаны существенные изменения вязкости в зависимости от состава ионной жидкости.

Viscosity of IL and AN+IL mixtures

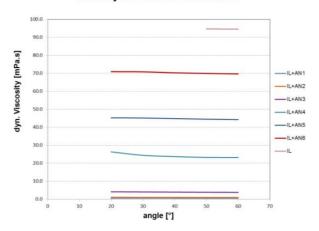


Рисунок 2: Вязкость ИЖ и растворов АН+ИЖ при различных углах

Наименование образца	Угол измерения [°]	Динам.вязк. [мПа.с]	Плотность [г/см³]	Капилляр
Чистый АН	20 30 40 50	0,33 0,33 0,33 0,33	0,77671	1,59 MM
	60	0,33		
иж+ан 1	20 30 40 50 60	0,52 0,51 0,51 0,50 0,49	0,84668	1,59 MM
иж+АН 2	20 30 40 50 60	1,00 0,98 0,96 0,94 0,93	0,92655	1,59 MM
иж+АН 3	20 30 40 50 60	4,08 3,99 3,91 3,83 3,77	1,06629	1,59 MM
ИЖ+АН 4	20 30 40 50 60	26,27 24,38 23,67 23,20 23,16	1,17711	1,8 MM
иж+АН 5	20 30 40 50 60	45,22 45,13 44,80 44,48 44,25	1,20697	1,8 MM
иж+АН 6	20 30 40 50 60	70,91 70,81 70,23 69,93 69,64	1,22495	1,8 MM
Чистая ИЖ	50 60	94,69 94,55	1,23812	1,8 MM

Таблица 2: Динамическая вязкость и плотность измеренных образов

5 Выводы

Микровискозиметр Lovis 2000 M/ME со всеми своими преимуществами является идеальным прибором для изучения ионных жидкостей:

- Благодаря маленькому размеру капилляра, потребуется лишь небольшой объём образца.
- Закрытая система предотвращает любые загрязнения и испарения пробы.
- Встроенные элементы Петелье обеспечивают высокоточный контроль температуры.
- Lovis 2000 МЕ может быть легко совмещён с плотномерами DMA™ одновременных измерений вязкости и плотности.

Контакты Anton Paar GmbH

Тел: +43 316 257-0

<u>support-visco@anton-paar.com</u> <u>support-ldc@anton-paar.com</u>

www.anton-paar.com

